If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+39x+72=0
a = 2; b = 39; c = +72;
Δ = b2-4ac
Δ = 392-4·2·72
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-3\sqrt{105}}{2*2}=\frac{-39-3\sqrt{105}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+3\sqrt{105}}{2*2}=\frac{-39+3\sqrt{105}}{4} $
| 43=3y+16 | | 6x-3(2x-1)=-33 | | 25y+15-16y=7y+1½-9 | | 3x-2(2x+7)=10 | | 10x+6-7x=1+8x | | 1.5-0.02x=0.18 | | (2x+1)^-4/5=81 | | 70+5x=150 | | 38700=200x-4500x/1000000 | | 5(x+6)-3x=5x | | (k-5)/2=10 | | 5n+9=7n-7 | | 150+40x=780 | | 3=1/2m(m-4) | | 7x+33x-5=10(4x=5) | | (2x+10)+(2x-5)=180 | | x^2+10x-47=0 | | 2(x+1)+3x=3€ | | 190+40x=1140 | | 7x+33x-5=10 | | 38700=-4300x/1000000 | | 0’5x=15-x | | -7-31y+5y^2=0 | | 1,2y-0,5y-4=5 | | 5/2t-3=1 | | 1.3(n+4)=3n+4.8 | | 1=a-13÷-6 | | F(x)=5x^2-15x | | 1/1+x=0 | | 5y^2-31y-7=0 | | 5^3x-1=25 | | 8(4y-5)-7y=5(5y-8) |